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The dynamic potentiMs used in the two-beam theory of electron diffraction are re-derived by using 
the integral equation rather than the fundamental equations. I t  is thereby ensm'ed that the weak 
beams also satisfy the boundary conditions. The dynamic potentials thus obtained differ from the 
previously derived expressions in being complex and dependent on the size and shape of the crystal. 
As the product of wavelength and thickness tends to zero, convergence to the kinematic result is 
obtained. Effects of the dynamic potentials, in particular their imaginary (non-Hermitian), part, 
on the two-beam expressions for a parallel-plate crystal and an infinite wedge are discussed. 

1. Introduction 

In  the two beam-treatment  of the dynamic theory in 
electron diffraction (Bethe, 1928 ; MacGillavry, 1940; 
Pinsker, 1953; Kato, 1952a) the presence of weak 
beams is taken into account by real increments to 
the Fourier coefficients of the potential: 

A Uoo = .Z" UgU_g/(k~- k~), 
g 

g 

A Uoh A U*o " k ~ = "-- ~ U g U g _ h / ( g - k 2 ) ,  
g 

(1) 

where the summation Zg is over all weak beams, 
i.e. excluding the strong beams, 0 and h. k g = k 0 + g  
is the wave vector inside the crystal of the weak beam 
corresponding to the reciprocal-lattice vector g/2m 
k is the length of the wave vector in vacuum. We 
have taken the Schr6dinger equation in the form 

{V2+k2+ U}~=0,  U = Z U g e x p [ i g r ] .  (2) 

The expression for the potential obtained on including 
these terms is usually called the dynamic potential. 
I t  has recently been pointed out, by Miyake (1959), 
that  the two-beam theory with inclusion of these 
additional terms does not converge to the kinematic 
theory when the product of wave length and thickness 
of the crystal, 2H, tends to zero. 

I t  is the purpose of the present paper to point out 
that,  if at tention is paid to the boundary conditions 
on deriving the AIU's, these will generally become 
complex and dependent on the size and shape of the 
crystal. The gl U's thus obtained can then be shown 
to vanish in the limit of thin crystals or short wave- 
length. Consequently convergence of the two-beam 
result to the kinematic expression is obtained. Effects 
of the A U's and in particular their imaginary parts 

* O n  l e a v e  f r o m :  D e p a r t m e n t  of  P h y s i c s ,  U n i v e r s i t y  of 
Oslo,  B l i n d e r n ,  N o r w a y .  

on some of the applications of the two-beam theory 
are discussed. 

2. Derivation of the dynamic  potentials 

The aim of introducing the dynamic potentials in 
two-beam theory is to include 2. order interactions 
involving weak beams in the expressions for the stlong 
beams. In  order to achieve this let us write the 
solution, inside the crystal, of our SchrSdinger equa- 
tion (2) in the form 

~0(r) = ~fl0 exp [ik0r] + y)h exp [ikhr] + AI ~ .  (3) 

We first want an approximate expression for d ~, 
the weak beams, in terms of the amplitudes, ~fl0 and ~flh 
of the strong beams. This can be obtained from the 
integral equation corresponding to (2) with an incident 
plane wave: 

~(r) =exp  [ikz] + I G(r[r')q~(r')U(r')dvr, . (4) 

Here G(r]r') is the free-space Greens function: 

f exp [ is(r--  r ')] 
G(rlr ') (1/2~) a s2 _ k2 dvs , ,) 

where the integration over the radial component, s, 
is understood to be performed along a specified contour 
in the complex plane (Schiff (1955) or Morse & Fesh- 
bach (1953)). Substituting (3) and the Fourier series 
for the potential into (4) one obtains, when neglecting 
A q9 in the integrand, 

[ i s ( r - V ) ]  exp 
82 - -  k2 

x X(Uav/o+ Ug-a~pn)exp [ikar']dvsdz'r,, 

where ZI ~9 obviously is to be identified with the terms 
for which g~=h, O. Carrying out the integration over 
d-or, , 

e x p  [isr] 
~(r) = (1]2~)3_Y '' I A 

8 2 - -  ]C2 g e) 

x S(kg-s ) (Ugw0+ Ug-h~f~)d~s, (5) 
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where 

S(s) = f exp [ i s r J d ~  
f ~  

.)V 

is the shape-transform of the crystal. As the crystal 
size increases, the above expression approaches the 
expression for the weak beams given in the references ; 
when the crystal thickness go to zero, the terms in 
/t ~ converge to their kinematic values. 

Expressions for ~f~/y~0 and k0 which include the 
2-order effects due to the weak beams can now be 
obtained by a procedure similar to the standard 
two-beam treatment.  Substitution of (3) with the 
expression (5) fo r /1~  in the Schr6dinger equation (2) 
gives, inside the crystal boundaries, 

[k ~ -  k~]~Vo exp [ikor] + [k ~ -  k~]~h exp [ik~r] 
+ [Uo~vo+ U-by~a] exp [ikor] 
+ [Ua~vo+ Uo~va] exp [ikhr] 

+ 2 "  2 (1/2~)~ ~ (1/(s~- k~)) exp l ist]  S (k~ S) 
g I 

x [ U ~ o +  U~-~,y~]Us exp [ i f r ]d~s=0 .  (6) 

Outside the crystal there will be in addition terms 
Z"(Ug~vo+ Ug-h)~va exp [ikgr] from U~. Within the 
crystal, these terms cancel with [V2+k~]A~. Mul- 
tiplication with exp [ - i k o r ] / V  and integration over V, 
and similarly with exp [ - i k ~ r ] / V  yields the standard 
form : 

[~o~-~]~0+[u-~+ AUo~]w~=O, ~0~=k~+ U0+ AU00, 
[ Uh + A Uho] ~o + [ ~ -  k~] ~h = 0, ~h=2 k 2 + Uo + A Uj, h, 

(7) 
where the A U's now take the form 

A(k), 
l1Uem =..~" Ug-mUe-gT(kg, lc) , (7a) 

g 

/ 1 ( k )  , 

T(kg, k)=(1/V(2x)8) I I S ( s - k ~ ) l  ~. 
s2_ k~ dTs, (7b) 

where the integration along the radial coordinate must 
be performed along the same contour as in the Green's 
function integral. For a general discussion of the form 
(7b), which is identical with the second integral in 
the Born series for the scattering amplitude, see 
Morse & Feshbach (1953). 

In  general T will be complex due to the contribu- 
tion from the pole at ]s]=k. Only for an infinite 
crystal, where the transform contracts to a ~-function 
will we get 

which leads to the previous result, equation (1). 
As will be shown below, however, the integrated 
effect of the imaginary part  of the A U's will not 
vanish as the thickness goes to infinity. 

3. Para l l e l -p la te  crystal ,  Laue case 

A parallel-plate with the z-axis normal to the plate 
can be described by the shape transform, 

S(s) = 8~a(s~)a(sy) sin (½s~H)/sz, 
where H is the thickness of the plate. Substitution of 
this form in equation (7b) makes the integrations in 
the x- and y-directions in reciprocal space trivial. 
The integration in the z-direction must be performed 
along a contour in the complex Sz-plane, consistent 
with the contour for the radial integration in the 
Green's function, see Fujiwara (1959). The contour 
is shown in Fig. l(b); the pole at the origin arises 

o o o  o o o o °  o S 2 

I 

K 

~s Ira. axis $I 

z- axis 

(a) (b) 
Fig. 1. (a) Wave vectors and angles, part 3. (b) Contour for 

integration along the z-direction in reciprocal space. 

because the square of the shape-transform mus t ' b e  
written as a sum of two terms the integrals of which 
vanish along infinite semi-circles in the upper and 
lower half plane respectively: 

2 ~ sin 2 (½szH)dsz 
T(kg, k) = ~ ~ '~ 2 

-co mzEsz + 2azkgz- ( k'~- k~)] 
1 f °~ ( l - e x p  [iszH])+(1-exp [-iszH]) 

= -~.  - ~o  m~[sz-81][s~-sz] ds~ . 

Closing the contour for the two terms in the 
numerator in the upper and lower half plane respec- 
tively, one obtains 

T(kg, k)= 1/(k~- k ~) + i(1 - e x p  [islH])/Hs~(sl- s2) 
+ i(1 - exp [is2H])/Hs~(sl-s2), (8) 

where s~.2= -kg,+ (k~z-k~+k2)½, see Fig. l(a). 
The last term in (8) corresponds to back-scattering 

and is negligible mfless the s~-axis through the end- 
point of /ca is nearly tangential to the Ewald sphere, 
a condition which for small excitation errors, ~g= 
[kg[-k, only obtains near glancing incidence, see 
Fig. l(a). 
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:Neglecting this case, however, we can introduce the 
usual approximations" 

k ~ -  k~ ~ 2k ~,  cos ~ _~ cos ~ ,  
s~ ~ - ~g/cos ~, s~ ~_ - 2 k ~ ,  

and obtain 

T(ka, k) ~ (1/2k$~) 
× [1 + (i cos a /H~) (1 -exp  [-iH~g/cos ~])]. (9) 

The limiting form of T as H decreases is found by 
expanding the exponential as a power series in H: 

T=iH/4ka~+ O(H2) , (9b) 

which shows that the / I  U's go to zero as the thickness 
goes to zero. The same limiting form obtains when 
the wave-length goes to zero in such a way that  
k~-k2 ~_2k~a stays finite. I t  is found quite generally 
that  

U00, Uaa-->U0 and Ua0, U0~->Ua as 2 H - + 0 ,  

from which it may be concluded that  the kinematic 
expression for the diffracted intensity is also a limiting 
ease for the two-beam dynamic result including the 
second-order interaction with the weak beams. 

A limiting form similar to (9b) can also be obtained 
from the expression (8) which includes back scattering. 
Expanding both exponentials as power series one finds 

T(ka, k) --'- iH/(s~- se) . 

This result is, however, meaningless unless s2H as 
well as sill < 1. For realistic thicknesses this condi- 
tion can only be obtained when ka is nearly parallel 
to the plate (cf. Fig. l(a)). 

To investigate the effect on the diffracted intensity 
of the complex gl U's, these must be introduced in the 
dispersion equation corresponding to (7), a procedure 
adopted by Yoshioka (1957) in his study of complex 
potentials arising from inelastic interactions. The 
real parts can be incorporated in the Fourier co- 
efficients as in standard treatments (see for example 
Pinsker (1953), Kato (1952)). We shall below assume 
this to be done. 

On writing the wave vectors inside the crystal in 
the form 

k0+il ,  k 0 + h + i l ,  

where k0 and 1 are real, we can collect real and imag- 
inary terms from the dispersion equation when the 
imaginary terms are small, so that  their squares and 
products can be neglected, we obtain 

.R~. [ ~ -  ~]  E~i- ~]  = (R~ {U0~})~* 
2 2 Im" 21. k 0 ( ~ -  k~) + 21. k~(~0 - k0) 

= Im (A Uoo)(~)- k 2) + Im {A Uaa)(~- k,~,) 
-~2Im(AUoa)Re{Uoa). (10) 

* This  applies s t r ic t ly  speaking to c e n t r o s y m m e t r i c  crys ta ls  
only.  F o r  n o n c e n t r o s y m m e t r i c  crys ta ls  we should  have  to  

V ~' wr i te  " t h e  H e r m i t i a n  p a r t  of Oh. 

The first of these equations gives the same dispersion 
surface as would be obtained if the imaginary parts 
were neglected. The second equation gives the imag- 
inary part of the wave vector in the direction of wave 
propagation, as the left-hand side can be written 
as a scalar product of 1 and a vector normal to the 
dispersion surface. The two signs correspond to the 
two branches of the dispersion surface, the upper sign 
relating to the branch nearest to the Laue point. 
In practical cases k0 and kh are nearly parallel and 
hence 

1.k. "~ 1.kh _~ (1/2] ~ + ~1 )2"  (lUll 2.1~1 
g 

+ I U~-gl2tw[ ~ 2lUol. IUg-nllm (T(ko; k)) 

= 2:"  (IVgll/1~l ~ lVh-gll/I~IF ( 1 -  cos [~gH/cosa]), 
g 4[~+Vlk~H/c°s  ~ (10a) 

where we have substituted the expressions (Ta) for 
Ai U00 etc., taken T from equation (9) and introduced 
the usual approximations (see Kato, 1952a) 

Boundary conditions for the parallel plate can now 
be applied in the standard way. In the notation used 
by Kato (1952a) we obtain the amplitude of the dif- 
fracted beam 

2 
~vn= C2:  ( -  1)¢ exp [i(k~)+il(~))nH], 

j=l C=c(1)c(~)/(c(1)-c(2)), (11) 

where c(J)= ~J/~v~ ~). The superscripts refer to the two 
branches of the dispersion surface and n is a unit 
vector normal to the crystal plate. From the tangential 
continuity of the wave vectors, 1 is parallel to n. 
When the imaginary parts are small, as assumed above, 
the effect of Im {A Uoo) etc. on C is negligible, and the 
intensity is found to be: 

Ih= I Uohl2/( ~ + l Uohl u) 
× [exp [ -  (l(~) +/(2))Hi sin e (Ik~) - k~)[ • ½H) 
+ ½(exp [-/(X)H] - exp [ -/(2)H])] . 

The second term in the parenthesis will usually be 
small, so that  the main effect of the imaginary 
part of the apparent or dynamic potential will be a 
modulation of the sin 9' or pendulum solution by the 
first exponential. The argument of the exponential 
must be computed from equation (10a). To study 
the magnitude of the modulation, consider the case 
when the incident beam is nearly normal to the plate. 
Then ~(1) ~ _ U(2), ~(1) ~ _ ~(2), and hence 

H(I(1) +/(2)) ___ 2: , ,  (I U~l~+lU~-hl ~) 
g x (1-cos  [U~g])/4k2~. (12) 

Inserting the typical values of 1 _~-~ (~ 4 volt) for 
each of the Fourier coefficients Ug and Ug-h and 
~g=0.02, a probable value for a 'systematic inter- 
action' (Hoerni (1956)), we find the corresponding 
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term in the sum to be of the order 0.25, when H $ g =  
(2n+l )~ ,  i.e. with a thickness period of ~300 /~ .  
This period is of the same order of magnitude as that  
of the pendulum solution for strong reflections. For 
non-systematic interaction an estimate of the average 
effect as a function of thickness can be obtained by 
integrating (12) over ~g. When the argument (12) is 
small for all Sg the average turns out to be 

exp [ -  (l(~)+le))H] 
(non-syst.) 

_ exp [-- Z [(I Ugl 2 +[Ug-hi2)H/2k2Sg]], 
g 

where Sg is the distance from the reciprocal-lattice 
point (1/2z)g to the line through the reciprocal 
lattice-point (1/2z)h and the origin. This latter form 
is seen to be an absorption term of standard type. 

I t  may be mentioned that  the thickness-dependent 
part of the real part of the d U's (cf. equation (9)) 
gives rise to an oscillating increment in the argument 
of the sin ~ in the pendulum solution. This increment 
is readily found to be 

~" ([ Ug]2-t - IU~,_g[ 2) sin (H$g)/8lc2~, 
g 

under the conditions when (12) is valid. The order of 
magnitude may amount to a few degrees. 

4. Crys ta l  wedge 

The most general two-beam treatment of electron 
diffraction from a wedge is given by Kato (1952a, b), 
and we shall make extensive use of his results. I t  will 
be assumed throughout that  the wave vectors involved 
have appreciable components along both normals to 
the wedge faces in order that  back-scattering terms 
can be neglected, and that  the Ewald sphere may be 
approximated by a plane in the vicinity of the 
reciprocal lattice point g. 

• x 

Fig. 2. Coordinates and notations for the wedge, part 4. 

Introducing the shape transform of the wedge, 
Fig. 2 

alfl~ + a2fll = 1 , 

and performing the integrations in (5), we obtain 

~J ~(r) = - _ ~ " [ 1 - e x p  [i~gz(Z-Xfl~l~)]] 
g (Ugv2o + Ug-h v2h) exp [ikgr]/2k~g 

by a suitable definition of contours. To obtain T we 
shall integrate over part of the wedge, defined by 
x < a  cf. Fig. 2. The rest of the wedge may be con- 
sidered to be covered by an opaque screen, following 
Kato (1952a). There results 

T -- [1 + 2 i / ~ g z H , , - 2 ( 1 - e x p  [ - i~gzH,n]) /~zH~] /2k~g  

where Hm is the thickness in the z-direction at x = a .  
Again it is seen that  T and hence the d U's vanish 

as the dimension of the crystal goes to zero. For a 
crystal of appreciable size, the last term will be 
negligible, whereas the second term will give rise to 
an integrated effect, as in the case of a parallel plate. 
To find this effect, we may follow the procedure 
given by Kato (1952b) for calculation of the refrac- 
tion effects from a limited wedge. I t  will be assumed 
that  A U is a slowly varying function of the position 
on the dispersion surface. 

Kato's (1952a, b) procedure leads to the integral 
expression 

~ _ ( -  1)c~) 
(2u)4 C f i i  exp [i(K~-k~))r~ 

÷(k~)-Kh)ra]dfradfredfk(of~ , (13) 

where C has the same mening as in equation (11), 
K~ and K~ are the wave vectors in vacuum of the 
incident and reflected beams respectively, k(J ) and 
k~ ) are wave vectors in the crystal and re and ra are 
position vectors on the entrance and exit face. Kato 
shows this to transform into (apart from uninteresting 
phase factors) 

y(j)_ (-- 1)(J) l h (2~)2naz C exp [iA(~)a]dfo,  (14) 

where A(~) is the vectorial difference between k(h ~5 
and the wave-vector kt~0 ) determined by the boundary 
conditions for an infinite wedge, and a is a vector 
parallel to the plane tangential to the dispersion 
surface at the wave point corresponding to an infinite 
wedge. Substituting k(0 ~) & il(~) for k~ j) and similarly 
for k~ ) in equation (13) we obtain in the same way, 

(-1)~ l V/f ) -  (27c)2na z C exp [iA(~)e] exp [ - l (~)z ' ]d fo ,  (14a) 

where z' is the length inside the crystal of the normal 
to dfo. This normal will be nearly parallel to the 
z-axis, and so we make approximation 

z' ~_(o,~/~ + o,~/~)x, dfo~_ dxdy , 
to obtain 

~p~)~ ( -  1)~ C exp [iA~)a] exp [- / ( i )Hm]-  1 
naz i zJ ~) -- l~J) Hm/ a " 
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Omitting the factors in front, the integrated inten- 
sity is found to be 

l~J~ ,-~ [1 - exp ( - 21CJ~Hm)]/21~J~H .... 

which is the correction factor to the integrated inten- 
sity of the two dynamic refraction spots. From the 
first of equations (10a) it is seen tha t  this factor may  
differ appreciably for the two spots. Considering, 
as a very simple example, the same numerical values 
as used in the end of section 3, we find tha t  near the 
Bragg angle the outer refraction spot, j = 2 ,  will be 
reduced in intensity by a factor ~ 0.8 whereas the 
inner spot will be only very slightly reduced in inten- 
sity. Such differences in intensity between the refrac- 
tion spots are frequently observed, the outer spot 
invariably being the weaker (Honjo & Mihama (1954)). 
An explanation for this effect in terms of inelastic 
interaction has been offered by Yoshioka (1957), but  
the intensity differences calculated from his theory 
appears considerably smaller. 

5. C o n c l u s i o n  

The above derivation of the dynamic potentials in the 
two-beam theory appears to resolve the discrepancy 
pointed out by Miyake (1959) between the limiting 
results as 2H-+ 0 for the two-beam theory and the 
n-beam theories of Cowley & Moodie (1957), Fujiwara 
(1959) and Fujimoto (1959). I t  may be well to point 
out, however, tha t  the limit H-+  0 will not always 
have a clear physical meaning, especially for crystals 
containing more than one kind of atom, as demon- 
strated experimentally and theoretically by Cowley & 
Kuwabara (1962), the limit H-+  0 being then purely 
formal. 

I t  may appear surprising tha t  complex wave vectors 
appear in a problem which is known to be soluble in 
terms of (an infinite number) of real wave vectors. 
This apparent contradiction is superficial; in the 
multiple wave-field picture the imaginary parts of 
the wave vectors represent the effect of interference 
between the neglected wave fields and the two wave 
fields of the two-beam theory. This effect can evidently 
be described by a periodic reduction in amplitude, 
as seen from equation (12). The effect of the imaginary 
parts of the A U's is thus a 'beating' of the two-beam 
solution, not an absorption, except for very thin 
crystals, where T is proportional to H. 

In the 'multiple elastic scattering' picture (Fujiwara, 
1959) the description is different; there the present 
theory for the direct and the diffracted beam, h, 
includes all terms which contain the beams g#h ,  0, 
less than three times and hence all second-order terms. 
The present results must accordingly converge to the 
kinematic result in the same way as in the phase-object 
approximation (Cowley & Kuwabara op. cir.) or a 
Born series. This is indeed found to be so by comparing 
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e.g. equation (9) with corresponding terms from these 
theories. 

The difference between the present t rea tment  and 
the one given in the references (Pinsker, 1953; 
MacGillavry, 1940; Kato, 1952a) lies in the method 
of expressing the weak beams in terms of the two 
strong ones. This has usually been accomplished by 
solving the g'th fundamental equation with regard 
to yJg, thereby introducing weak beams which fail to 
satisfy the boundary conditions. We have instead 
employed the integral equation corresponding to the 
problem, and hence ensured tha t  the weak beams also 
conform to the boundary conditions. In addition we 
find it questionable whether the terms 

2~ ug-s ~s 
.f ~g, h, 0 

neglected in the fundamental  equation will always 
be less than the diagonal term U0~g. 

I t  may finally be mentioned tha t  the procedure 
employed here can be considered as a first step in an 
iterative procedure, as the A ~ as given by equation 
(5) may be reinserted in the integral equation to 
provide a better approximation for A ~ and hence for 
the strong beams. Such a procedure may proceed 
along lines similar to the Born-series t rea tment  car- 
ried out by Fujiwara (1959). 
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